Kaonic nuclei experiments at J-PARC

Takumi Yamaga (RIKEN) for the J-PARC E15/E80/P89 collaboration

3rd HEF-ex workshop @ J-PARC 2023.3.14–16

$$I_{\bar{K}N} = 0 \quad \frac{1}{\sqrt{2}} \left(-K^{-}p + \bar{K}^{0}n \right) \quad \begin{array}{l} \text{Strong} \\ \text{attractive} \end{array}$$

$$I_{\bar{K}N} = 1 \quad \frac{\bar{K}^{0}p}{\frac{1}{\sqrt{2}} \left(K^{-}p + \bar{K}^{0}n\right)} \quad \text{attractive}$$

KN interaction

Possible to make quasi-bound states with $I_{\bar{K}N} = 0$

$$J^{\pi} = 0^{-1}$$

$$(\bar{K}[NN]^{I=1})^{I=1/2}$$

$$\sqrt{\frac{3}{4}}[\bar{K}N]^{I=0}N + \sqrt{\frac{1}{4}}[\bar{K}N]^{I=1}N$$

Deeper BE = 25 - 28 MeV $\Gamma = 30 - 60 \text{ MeV}$

S. Ohnishi et al., PRC **95** (2017) 065202

The lightest \overline{K} -nucleus

N. V. Shevchenko, Few Body Syst. 61 (2020) 27

The lightest \overline{K} -nucleus

BE = 26 - 28 MeV $\Gamma = 31 - 59 \text{ MeV}$

S. Ohnishi et al., PRC **95** (2017) 065202

 $I_z = -1/2$ state $K^- pn - \bar{K}^0 nn$

BE = 25 - 28 MeV $\Gamma = 31 - 59 \text{ MeV}$

S. Ohnishi et al., PRC **95** (2017) 065202

 $I_z = + 1/2$ state ${}^{\prime\prime}K^-pp''$ $K^-pp-\bar{K}^0pn$

The J-PARC E15 experiment

Searching for "*K*⁻*pp*"

Production reaction

 $^{3}\text{He}(K^{-}, n)$

The J-PARC E15 experiment

Searching for "*K*⁻*pp*"

Production reaction

 $^{3}\text{He}(K^{-}, n)$

The J-PARC E15 experiment

Searching for "*K*⁻*pp*"

Beam spectrometer

Detector system

Selection of the Λpn final state events **Mesonic final states;** 1000 $\Lambda p + \pi N, \Sigma^0 p + \pi N$ Signal; $K^- + {}^3 \text{He} \to \Lambda p + n_{\text{miss}}$ BG: Counts $\Sigma^0 pn \sim 12\%$ $\Sigma^{-}pp \sim 7\%$ **BG**; $\Sigma^- pp \rightarrow pp\pi^- + n$ **BG**; $\Sigma^0 pn \rightarrow pp\pi^- + n\gamma$ $\pi YNN \sim 2\%$ 1.2 0.8 4 ³He(K^- , Λp)X missing mass (GeV/ c^2)

signal: $\Lambda pn \sim 80\%$

Measurement

Result

Result

Quasi-free process

Λp invariant-mass

Momentum transfer to Λp

We observed the first clear signal of $\bar{K}NN$.

$$BE = 42 \pm 3$$
 (
 $\Gamma = 100 \pm 7$ (s

Fit result

- (stat.) $^{+3}_{-4}$ (syst.) MeV
- (stat.) ⁺¹⁹₋₉ (syst.) MeV
- * obtained as peak position & width of simple Breit-Wigner

Ongoing analysis

Other decay channel of *KNN*

Selection of the $\pi^-\Sigma^+ pn$ final state events

In the case of

$\pi^{-}\Sigma^{+}p + \eta_{\text{miss}}$ $\rightarrow \pi^{-}(\pi^{+}n)p$ \Leftarrow **Detected with CDS** *MlSS*

$S(\pi^{-}\Lambda pp)$

 $\frac{1.15}{\text{GeV}/c^2}$

S. Ohnishi et al., PRC **95** (2017) 065202

- The second lightest \overline{K} -nucleus
 - $J^{\pi} = 1/2^{-1}$

 $K^-ppn-\bar{K}^0pnn$

c.f., *KNN*:

BE = 25 - 28 MeV $\Gamma = 30 - 60 \text{ MeV}$

S. Ohnishi et al., PRC **95** (2017) 065202

- The second lightest \overline{K} -nucleus
 - $J^{\pi} = 1/2^{-1}$

Production reactions

*K*NN production

 $^{3}\text{He}(K^{-}, n)$

KNNN production

⁴He(K^- , n)

Short summary so far

 $K^- + {}^3\text{He} \rightarrow \Lambda p + n$

0.6(C) $m_{\pi^-\Sigma^+p}$ $d\sigma/dm (\mu b/(MeV/c^2))$ 0.4 0.2 2.2

Signal of *K*NN

Let's move to the next stage!

$K^-+{}^{3}\text{He} \rightarrow \pi YN+n$

 $K^{-}+^{4}\text{He}\rightarrow \Lambda d+n$

Signal of *K*NNN

 $\Gamma_{\pi YN} \gg \Gamma_{YN}$

Future project

== Systematic measurement for kaonic nuclei ==

Programs for *K*-nuclei

$\bar{K}NN$ system J^{π} determination

- To confirm the existence more robustly
- Measuring $d\sigma/dq \& \alpha_{\Lambda p}$
- Search for $(\bar{K}NN)^{I_z=-1/2}$
- Isospin partner of observed $\bar{K}NN$
 - $\bar{K}NN \rightarrow \Lambda n$ decay

Decay branch

Mesonic $\pi\Lambda N, \pi\Sigma N$

J-PARC P89

Heavier system J-PARC E80 *KNNN* system

Door to heavier system ${}^{4}\text{He}(K^{-}, N)$ reaction $K^{-}ppn - \bar{K}^{0}pnn$ (I=0)

$\bar{K}NNNN$ systemExpected large B.E. & high density $^{6}\text{Li}(K^{-}, d)$ reaction $K^{-}-\alpha$ $\bar{K}^{0}-\alpha$

Construction has been started (Completed in 2025)

Modification of K1.8BR beam line

Planned modification

NN \bar{K} +N

NNĀ +╋ N \mathcal{D} N

$$n \overline{k^0} n \rightarrow \Lambda + n$$

.8

Expected results

Counts / (20 MeV/c)

We would like to robustly confirm the existence of \overline{K} -nuclei X clarify their internal structure

Thank you for your attention!

= The J-PARC E15 collaboration =

S. Ajimura¹, H. Asano², G. Beer³, C. Berucci⁴, H. Bhang⁵, M. Bragadireanu⁶, P. Buehler⁴, L. Busso^{7,8}, M. Cargnelli⁴, S. Choi⁵, C. Curceanu⁹, S. Enomoto¹⁰, H. Fujioka¹¹, Y. Fujiwara¹², T. Fukuda¹³, C. Guaraldo⁹, T. Hashimoto¹⁴, R. S. Hayano¹², T. Hiraiwa¹, M. Iio¹⁰, M. Iliescu⁹, K. Inoue¹, Y. Ishiguro¹⁵, T. Ishikawa¹², S. Ishimoto¹⁰, K. Itahashi², M. Iwasaki^{2,11},^{*} K. Kanno¹², K. Kato¹⁵, Y. Kato², S. Kawasaki¹, P. Kienle¹⁶,[†] H. Kou¹¹, Y. Ma², J. Marton⁴, Y. Matsuda¹², Y. Mizoi¹³, O. Morra⁷, T. Nagae¹⁵, H. Noumi¹, H. Ohnishi^{17,2}, S. Okada², H. Outa², K. Piscicchia⁹, Y. Sada¹, A. Sakaguchi¹, F. Sakuma²,[‡] M. Sato¹⁰, A. Scordo⁹, M. Sekimoto¹⁰, H. Shi⁹, K. Shirotori¹, D. Sirghi^{9,6}, F. Sirghi^{9,6}, K. Suzuki⁴, S. Suzuki¹⁰, T. Suzuki¹², K. Tanida¹⁴, H. Tatsuno¹⁸, M. Tokuda¹¹, D. Tomono¹, A. Toyoda¹⁰, K. Tsukada¹⁷, O. Vazquez Doce^{9,16}, E. Widmann⁴, T. Yamaga^{2,1},[§] T. Yamazaki^{12,2}, Q. Zhang², and J. Zmeskal⁴ ¹ Osaka University, Osaka, 567-0047, Japan ² RIKEN, Wako, 351-0198, Japan ³ University of Victoria, Victoria BC V8W 3P6, Canada ⁴ Stefan-Meyer-Institut für subatomare Physik, A-1090 Vienna, Austria ⁵ Seoul National University, Seoul, 151-742, South Korea ⁶ National Institute of Physics and Nuclear Engineering - IFIN HH, Bucharest - Magurele, Romania INFN Sezione di Torino, 10125 Torino, Italy ⁸ Universita' di Torino, Torino, Italy ⁹ Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy ¹⁰ High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan Tokyo Institute of Technology, Tokyo, 152-8551, Japan ¹² The University of Tokyo, Tokyo, 113-0033, Japan ¹³ Osaka Electro-Communication University, Osaka, 572-8530, Japan ¹⁴ Japan Atomic Energy Agency, Ibaraki 319-1195, Japan ¹⁵ Kyoto University, Kyoto, 606-8502, Japan ¹⁶ Technische Universität München, D-85748, Garching, Germany ¹⁷ Tohoku University, Sendai, 982-0826, Japan and ¹⁸ Lund University, Lund, 221 00, Sweden

New CDS

Superconducting solenoid magnet Superconducting solenoid magnet Neutron counter & polarimeter Are you interested in? Join us!